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ABSTRACT

Numerical methods are widely used in seismic exploration to
simulate wave propagation; however, the algorithms are based on
various assumptions. The accuracy of numerical simulations is of
particular interest in the case of realistic geologic setups. The di-
rect comparison of numerical results can have limitations, and an
alternative approach can be the comparison of synthetic results
with experimental data, obtained for a small-scale physical model
in laboratory conditions. Laboratory experiments are repeatable
and provide high-quality data for a known configuration.We have
developed a possible workflow to adapt the numerical simula-
tions and the laboratory experiments to each other, such that
the two can be easily compared with high accuracy. The model
is immersed in a water tank, and a conventional pulse-echo tech-
nique is used to collect the reflection data in zero-offset and
offset configurations. We use a spectral-element method for

the numerical modeling. The model geometry is implemented us-
ing a nonstructured mesh, and the computational cost can be op-
timized using larger elements and higher-order basis functions.
The real source transducer characteristics are implemented based
on a new approach: laboratory characterization of the impulse
response, followed by an inversion step to obtain a numerically
equivalent source. The comparison of the zero-offset synthetic
and laboratory results reveals an excellent fit in terms of arrival
time, phase, and amplitude. Minor amplitude mismatches may
be attributed to the noise recorded in the laboratory data and
to the possible inaccuracy of the proposed source implementa-
tion. Comparison of the simulated and laboratory offset traces
also exhibits a good fit in general, but with significantly less ac-
curacy for some arrivals than in the zero-offset case. This can be
mainly attributed to the inaccuracies of the transducer positions
during the laboratory measurements combined with the strong
topography of the model.

INTRODUCTION

Numerical simulation of seismic-wave propagation is widely
used in environmental and industrial applications for subsurface
evaluation in seismic exploration (e.g., for survey design, data
processing, and interpretation; Robertsson et al., 2007). Simulation
is also a core tool of seismic imaging and inversion (Virieux et al.,
2011). Conventional methods (e.g., ray tracing, Kirchhoff integral,
and finite-difference methods), widely used in seismic exploration,
are efficient to simulate realistic wavefields in environments with
simple structures and slowly varying material properties. However,

difficulties arise for environments with large and rapid structural
changes, due to shadow zones and (multiple) diffractions. Thus, dif-
ferent methods have been developed to improve seismic modeling
in realistic geologic environments, including steeply dipping faults,
curved interfaces, and salt bodies (e.g., Mittet, 2017). Before real
applications, new methods are typically tested against other numeri-
cal methods using synthetic configurations. Several projects have
focused on the comparison and validation of different numerical
results (e.g., Igel et al., 2000; Moczo et al., 2006; Fehler and
Keliher, 2011; Chaljub et al., 2015). Because each numerical algo-
rithm is based on mathematical or physical assumptions, their direct
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comparison for realistic and complex models can have limitations
because it can be difficult to determine the one that gives the best
approximation of a physically unknown solution. Therefore, there is
strong interest in using physical data sets to benchmark synthetic
results. However, because in real life the subsurface of the earth
is never accurately known, the synthetic results cannot be directly
compared with any seismic or seismological data set from real mea-
surements.
An alternative approach to test and validate the performance of

numerical methods in realistic cases can be the comparison of syn-
thetic results with experimental data, obtained for a small-scale
physical model in laboratory conditions. This implicitly assumes
that the scaled physical mechanisms are identical to those at seismic
scale (Ebrom and McDonald, 1994), and this assumption is fulfilled
in the case of the linear wave equation. Considered as obsolete
in the 1990s essentially due to the drastic increase in computing
capacities, laboratory experiments have recently been reintroduced
into the ideas-to-applications pipeline. The laboratory can be con-
sidered as a half-way point between numerical modeling and field
observations. Indeed, laboratory experiments are repeatable, more
controllable than real seismic surveys, versatile in terms of acquis-
ition setup, and provide high-quality data for a known configuration.
Furthermore, similar to real seismic acquisitions and unlike some
numerical data, laboratory measurements contain random and sig-
nal-generated noise, multiples, mode conversions, and uncertainties
due to position inaccuracies. Because these sources of noise and un-
certainties can be better assessed than in the case of field data sets,
laboratory experiments also provide higher fidelity data than real seis-
mic surveys. Therefore, laboratory experiments are a valuable tool to
validate numerical simulations against real physical data sets.
Initially, small-scale physical modeling was extensively devel-

oped for a better understanding of wave propagation phenomena
(e.g., Wapenaar and Berkhout, 1987; Pant et al., 1992) and for the
validation of theoretical predictions (Favretto-Anrès and Rabau,
1997). Laboratory experiments are still used nowadays to investi-
gate physics that is not sufficiently understood to be numerically
modeled with confidence (Cooper et al., 2010; Stewart et al.,
2012; Ekanem et al., 2013; Xu et al., 2016; Chang et al., 2017).
Data from laboratory experiments are also used as input to inverse
problems (Favretto-Anrès and Sessarego, 1999; Pratt, 1999; Bretau-
deau et al., 2013; Chai et al., 2015), to test new data processing
algorithms (Campman et al., 2005), and in time-lapse 3D studies
(Sherlock et al., 2000). More recently, small-scale modeling ap-
proaches have been developed as tools to validate numerical mod-
eling and seismic-imaging methods in the context of onshore and
offshore seismics (Bretaudeau et al., 2011; Favretto-Cristini et al.,
2014; Tantsereva et al., 2014a, 2014b). In particular, Tantsereva et al.
(2014a) evaluate the ability of a 3D discretized Kirchhoff integral
method (DKIM) to accurately simulate complex diffractions using a
zero-offset laboratory data set, measured for a small-scale model
with strong topography, immersed in a water tank. Comparisons of
numerical and laboratory data sets showed that the DKIM could
correctly reproduce the wavefield, except in the vicinity of secon-
dary shadow boundaries created by the interaction of the edges of
the topographic structures. As a follow-up of the work of Tantsereva
et al. (2014a), Favretto-Cristini et al. (2017) quantitatively analyze
the effect of multiple scattering and surface curvature on the wave-
field to define the cases in which these effects may be neglected in
the numerical modeling without a significant loss of accuracy.

These works clearly show the importance of laboratory data sets
as part of the benchmarking options for numerical algorithms.
An efficient benchmarking procedure requires a carefully chosen

and jointly adapted approach to the laboratory experiments and the
numerical modeling. On the one hand, the numerical tools must be
adapted to the experimental configuration (e.g., implementing the
real source characteristics, material properties, and acquisition con-
ditions). On the other hand, the laboratory experiments have to be
carried out in accordance with the capabilities of the numerical tools
(e.g., choosing the acquisition geometry such that the future com-
putational cost is the lowest possible). In addition, experimental un-
certainties must be identified, to be subsequently minimized as
much as possible, and numerical simulations may also contribute
to it.
The goal of this paper is to address the above challenges by pro-

viding a possible way to adapt the numerical simulations and the
laboratory experiments such that the two can be easily compared
with high accuracy. To achieve this goal, we resorted to spectral-
element modeling (SEM) as a full-wave method, which is not based
on strong underlying assumptions (such as, for example, the
DKIM). SEM also becomes more and more popular with time in the
seismic community because it is well-suited for high-performance
computing (Komatitsch et al., 2003). Because it combines the ac-
curacy of a pseudo-spectral method with the flexibility of a finite-
element method, SEM allows for handling of complex geometries
by using a nonstructured mesh and different element sizes in the
computational domain (Komatitsch and Tromp, 2002; Oliveira and
Seriani, 2011). Because the necessary trade-off between accuracy
and computational cost is usually sought after, we are also interested
in the ability of SEM to accurately simulate complex 3D wavefields
including (multiple) diffractions at the lowest possible computa-
tional and man-hour cost. Few papers are devoted to the comparison
of SEM with other numerical methods (e.g., Capdeville et al., 2002,
2003; Moczo et al., 2010; De Basabe and Sen, 2014; Chaljub et al.,
2015). Pageot et al. (2017) recently compare laboratory and syn-
thetic data sets in an onshore configuration to investigate surface
wave propagation and amplitude transformation between two di-
mensions and three dimensions. But to the best of our knowledge,
no paper uses laboratory experiments as reference data sets for com-
parison in an offshore configuration.
In this paper, we thus compare 3D spectral-element simulations

with laboratory measurements in 3D zero-offset and 3D offset off-
shore reflection configurations for the so-called Marseille-Benchie
model. To our knowledge, it is the first time that such a comparison
for the general offset case is presented. The Marseille-Benchie
model is based on French’s model (French, 1974), and it also in-
cludes additional structures with steep flanks, sharp edges, corners,
and curved interfaces (Tantsereva et al., 2014a). It enhances multi-
ple reflections and diffractions, as well as shadow zones and inter-
actions between different structures. This complexity provides a
significant challenge to any numerical method to reproduce the
wavefield. The paper is organized as follows: The “Small-scale seis-
mic modeling” section briefly describes the laboratory experiments,
i.e., the small-scale model and the experimental setup. The labora-
tory data sets obtained in zero-offset and offset configurations
are also presented, together with their physical interpretations. The
“Numerical modeling” section is devoted to a short description of
SEM. More importantly, we also discuss in detail the input data/
parameters, such as the model geometry, the material properties,
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and the characteristics of the source and receiver transducers. In the
“Data comparisons” section, we compare the laboratory and numeri-
cal data sets, and then we discuss the results in the “Discussion”
section.

SMALL-SCALE SEISMIC MODELING

We carried out several laboratory experiments in a water tank, in
which wave propagation occurs in small-scale conditions. A scaling
factor of 1:20,000 is used to scale down the real-life dimensions of
typical seismic setups to the laboratory scale. Hence, an experimen-
tal frequency of 500 kHz corresponds to a seismic frequency of
25 Hz, and an experimental distance of 1 mm corresponds to 20 m
at seismic scale. Material properties, such as velocity, density, and
attenuation are not affected directly by the scaling.

Small-scale geologic model

The Marseille-Benchie model contains various complex topo-
graphic features, such as a dome, a truncated dome, a truncated pyra-
mid, and two flat parts separated by a ramp (Figure 1). The model is
made of polyvinyl chloride (PVC) and has a size of 600 × 400 mm,
corresponding to 12 × 8 km at seismic scale. Its thickness varies
between 30 and 70 mm, depending on the geometry. The mea-
sured material properties of the PVC are VP ¼ 2220� 10 m∕s,
VS ¼ 1050� 10 m∕s, and ρ ¼ 1412� 17 kg∕m3. PVC is consid-
ered to be homogeneous and isotropic for the frequency range of in-
terest of this work (250–650 kHz). For example, the P- and S-wave
velocities were found to be quasi-constant for this frequency range,
suggesting a negligible dispersion. Attenuation was measured using
the amplitude of the transmitted monochromatic sine waves at differ-
ent frequencies through different PVC samples of varying thickness.
Following the measurements, the attenuation can be transformed into
quality factors: 30 < QP < 60 and 27 < QS < 31 for P- and S-waves,
respectively. As is known, the measurement of attenuation is one of
the most difficult laboratory tasks among all the material property
characterizations. According to the measurements and accounting for
the uncertainties of this parameter, we consider the PVC to have the
same quality factor between 250 and 650 kHz, which is in good
agreement with the literature (Favretto-Anrès and Rabau, 1997). For
further details on the model, see also Tantsereva et al. (2014a).

Experimental setup

Because our work is concerned with offshore measurements, the
model was immersed in a water tank equipped with a computer-con-
trolled acquisition system that allows for accurate positioning of the
source and receiver transducers. The water temperature was contin-
uously monitored during the measurements, providing accurate
knowledge of the speed of sound waves in water (usually approx-
imately 1480 m∕s). Water was considered to have a density of
1000 kg∕m3 and negligible attenuation.
A conventional pulse-echo technique was used to collect reflec-

tion data in zero-offset and offset configurations (Figure 1). Zero-
offset measurements were performed using a custom-made Ima-
sonic® transducer as the source and the receiver. It has a diameter
of 3 mm and was located 180� 0.5 mm above the flat part of the
model (corresponding to 3.6 km at seismic scale). The source signal
generated by this transducer and its associated frequency spectrum
for the frequency range of interest of this work is shown in Figure 2.

The transducer has a dominant frequency of 500 kHz and a broad-
beam radiation pattern because the width of the main lobe is 35°
at −3 dB. This radiation pattern allows for a large area to be illu-
minated and therefore more 3D effects to be captured, e.g., the in-
teraction of waves with multiple topographic features and multiple
wave scattering (Favretto-Cristini et al., 2017).
Offset measurements were performed using two transducers,

namely, the above-mentioned transducer as the source and an omni-
directional Teledyne Reson® hydrophone as the receiver. Both
transducers were located 150� 0.5 mm above the flat part of the
model. The hydrophone has an active diameter of 4 mm, and its
sensitivity is constant between 50 and 800 kHz. The source can be
tilted with various angles to illuminate different parts of the model
or to enhance some particular effects, such as shadow zones.

Laboratory data sets

We performed acquisitions along the x-lines (Figure 1) with a
sampling distance of 0.5 mm (corresponding to 10 m at seismic
scale). The collected data set thus consists of numerous parallel

Figure 1. Illustration of the small-scale seismic experiments per-
formed in the water tank. The Marseille-Benchie model contains
(a) a dome, (b) a truncated pyramid, (c) a truncated dome, (d) a ramp,
and (e) an elevated plateau. The model is illuminated by a piezoelec-
tric transducer (on the left). In the offset configuration, the wavefield
is recorded by a hydrophone (on the right).

Figure 2. (a) Source signal (filtered between 250 and 650 kHz) gen-
erated by the source transducer and recorded by the receiver hydro-
phone in the opposite position and (b) the associated frequency
amplitude spectrum.

Comparison of synthetic and laboratory data T197
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profiles, providing a set of reflection data for a dense grid (with
receiver spacing of 0.5 mm in both directions). To enhance the sig-
nal-to-noise ratio, 256 acquisitions were performed at each grid
point and then the individual registrations were stacked. The speed

of sound in water was 1485� 0.1 and 1484� 0.1 m∕s for zero-off-
set and offset measurements, respectively, due to the different water
temperatures during the two measurements. The water column
above the transducer was always at least 0.6 m, and the tilt angle

of the source transducer was 39° for the offset
measurements.
For the sake of brevity, we focus only on one

line in this paper, located above the full dome,
the truncated pyramid, and the ramp (the red line
in Figure 3). This acquisition line provides com-
plex diffraction effects, multiple reflections, and
arrivals corresponding to curved interfaces. Fig-
ure 4 shows the laboratory zero-offset data set for
the study line, overlaid by the interpretation of
the recorded events. For the sake of clarity, only
the main events are shown in Figure 4. Events (a
and c) represent the arrivals related to the top sur-
face of the PVC, corresponding to the pyramid

and the dome, and to the flat parts, respectively. Event (a) mainly
consists of reflections (see the positions between 90 and 115 mm for
the pyramid and 95–410 mm for the dome). There are also some
diffraction hyperbolas corresponding to the edges of the top surface
of the pyramid, for positions less than 90 mm and greater than
115 mm. Moreover, due to the angle of the truncation, there are two
smaller hyperbolas in the center of the pyramid, partly overlapping
the reflections from the top flat surface of the object. Similar to
event (a), event (c) mainly consists of reflections, as well as some
diffraction hyperbolas related to the junctions of the pyramid and
the dome with the flat part. Events (b and d) correspond to reflec-
tions from the bottom of the PVC, below the pyramid and the dome,
and below the flat part, respectively. Because Figure 4 is a time
section, a classic velocity pull-up effect can be seen in the different
arrival times of events (b and d). Indeed, depending on the overbur-
den, reflections from the same horizontal bottom surface of the PVC
arrive at different times. Event (e) represents reflections from the
small truncated dome (Figure 1). This out-of-plane arrival, which
is due to the broad-beam radiation pattern of the source transducer,
was not considered during the simulations. Event (f) shows reflec-
tions from the ramp, which were partly accounted for during the
simulations. Note that the diffractions on the right side of the section
after 200 μs and for positions between 300 and 420 mm, are related
to the side of the model.
Figure 5 shows the laboratory offset data set (i.e., a common-shot

gather) for the study line together with the interpretation of the main
events. Event (a) shows the direct arrival from the source, and event
(b) shows the reflections from the dome. All the interpretations
marked as event (c) correspond to reflections/diffractions from the
pyramid. Event (d) illustrates the reflections from the flat part of the
PVC. Event (e) is related to reflections from the small truncated
dome, and event (f) is related to reflections from the ramp. Event
(g) is not related to the model, but to spurious arrivals from the a
cquisition system (not considered during the simulations).

NUMERICAL MODELING

We used an SEM for the numerical modeling of the experiments.
Following a brief recall of the method, we discuss the strategy used
to mesh the model geometry, the numerical implementation of the
real transducer characteristics, and the preliminary numerical cali-
bration of the material properties.

Figure 3. Part of the model used for the numerical simulations with a coarse mesh. The
red line denotes the position of the study line discussed in the paper. The yellow asterisk
shows the source position for the offset study line. The different colors show the sub-
domains necessary for the nonstructured meshing.

Figure 4. Cross section of the laboratory zero-offset data set, corre-
sponding to the red line in Figure 3. The data were filtered between
250 and 650 kHz. Annotated events: (a and b) The top and bottom of
the pyramid and the dome, (c and d) the top and bottom of the flat
part, (e) truncated dome, and (f) ramp. The vertical lines denote the
zero-offset traces chosen for comparison.

Figure 5. Cross section of the laboratory offset data set (i.e.,
common-shot gather), corresponding to the red line in Figure 3.
The data were filtered between 250 and 650 kHz. Annotated events:
(a) direct arrival, (b) dome, (c) pyramid, (d) flat part, (e) truncated
dome, (f) ramp, and (g) spurious reflection from the acquisition sys-
tem. The source position is shown in Figure 3 with the yellow aster-
isk. The vertical line denotes the offset-trace chosen for comparisons.
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Recall of the SEM

Here, we focus only on some of the most important features of the
method, and we refer the reader to Komatitsch and Vilotte (1998),
Fichtner (2010), or Peter et al. (2011) for more details.
The strong form of the wave equation for viscoelastic materials is

described as

ρ∂2t u ¼ ∇ · σþ f; (1)

where ρ denotes the mass density, u ¼ uðx; tÞ is the displacement
field, x is the spatial coordinates, t is the time, σ is the stress tensor,
and f is the source term. The source term for viscoelastic materials
can represent, for example, a point source:

f ¼ −D · ∇δðx − xsÞSðtÞ; (2)

where D denotes the moment tensor, xs is the source position, δ is
the Dirac delta distribution, and SðtÞ is the source wavelet. Under
the assumption of small perturbations, the stress tensor σ is linearly
related to the displacement field through the constitutive relation-
ship (Hooke’s law):

σ ¼ C∶∇u; (3)

where C denotes the stiffness tensor, describing the elastic proper-
ties of the material. Because the Marseille-Benchie model is made
of a viscoelastic material, equation 3 has to be modified such that
the stress is determined by the entire strain history:

σðtÞ ¼
Z

t

−∞
∂tCðt − t 0Þ∶∇uðt 0Þdt 0: (4)

We use the technique of Liu et al. (1976) to approximate the ab-
sorption based on a set of three Zener standard linear solids. This
standard approach usually assumes that the quality factor Q does
not depend on the frequency. This assumption is confirmed by our
laboratory measurements, which show the same Q-factor for the
PVC used in the model when measured between 250 and 650 kHz
(see the “Small-scale geologic model” section). In practice, the im-
plementation of the Zener model requires fitting Q in the frequency
range of interest by using a set of relaxation mechanisms (relaxation
times represented by points in the frequency range and their asso-
ciated weights). A linear approach can be used by setting the opti-
mization points at given frequencies in the frequency range of
interest and then optimizing the fit for the weights (Emmerich
and Korn, 1987). However, this approach does not ensure the pos-
itivity of the weights and thus the decay of the total energy.
An alternative approach is introduced by Blanc et al. (2016) to

ensure that the weights are always positive and their nonlinear op-
timization is also more accurate in terms of fitting the constant Q
approximation in the frequency range of interest. The nonlinearity
means that the points and the weights are optimized to obtain a bet-
ter fit of Q in the frequency range of interest. We use this approach
for the simulations presented in this work.
SEM uses the weak form of the equations, which can be obtained

by multiplying equation 1 with an arbitrary test function w and then
integrating by parts over the total volume of the model Ω:

Z
Ω
ρw · ∂2t ud3x ¼

Z
∂Ω

n̂ · σ · wd2x

−
Z
Ω
∇w∶σd3xþM∶∇wðxsÞSðtÞ: (5)

Equation 5 can be reformulated as

MüðtÞ þKuðtÞ ¼ fðtÞ; (6)

where M denotes the mass matrix and K denotes the stiffness ma-
trix. In SEM, the computational cost is optimized by combining
high-degree Lagrange interpolants to represent the wavefield and
the Gauss-Lobatto-Legendre (GLL) quadrature to compute the in-
tegrals involved (Komatitsch and Vilotte, 1998). This combination
leads to a perfectly diagonal mass matrix in equation 6, which then
enables the use of an explicit time scheme that can be efficiently
parallelized (Komatitsch et al., 2003; Carrington et al., 2008; Vos
et al., 2010). On the one hand, SEM is efficient in handling complex
geometries and fluid-solid coupling. On the other hand, the standard
GLL quadrature requires a hexahedral mesh in three dimensions,
which can be challenging to obtain in case of a nonstructured mesh
for realistic geologic setups.
Considering only a part of the full physical-domain results in the

need for artificial boundaries in the simulations. To avoid spurious
reflections from these boundaries, we use a perfectly matched layer
(PML) technique (Komatitsch and Tromp, 2003; Festa et al., 2005;
Kristek et al., 2009). Because SEM uses the weak form of the wave
equation, the PML equations have singularities that need to be
explicitly removed (Xie et al., 2016).
In our work, we used the Specfem3D-Cartesian, an open-source

spectral-element software package (Komatitsch and Vilotte, 1998),
with explicit second-order Newmark time stepping (Hughes, 1987).

Meshing

Creating a nonstructured hexahedral mesh for a complex geom-
etry is a challenging and lengthy task (Shepherd and Johnson, 2008;
Staten et al., 2010). We used Cubit/Trelis (Blacker, 1994) to mesh
the model. In the case of a nonstructured mesh, we need to keep in
mind the future computational cost and the accuracy by considering
three points. First, the element size must be small enough to accu-
rately model the highest frequencies to be considered. Second, the
size of the different elements in one material should be as equal as
possible (depending on the geometry) to avoid too-small elements.
This is important because smaller elements require smaller time
steps (i.e., higher computational cost) and more memory. Finally,
one needs to avoid creating too-distorted/-elongated elements,
which could result in a mesh of poor quality or even containing
elements with negative Jacobians, making the simulation unstable.
Because the model has a complex overall geometry, fully automatic
hexahedral meshing algorithms could not be used. Our solution was
to cut the domain into several subdomains, which were easier to
handle for the meshing algorithms (Figure 3). The challenge of
the task was to find the order in which the individual subdomains
had to be meshed, such that the entire computational domain could
be meshed at the end. Due to these difficulties, and also to reduce
the computational cost, we considered only a part of the full model
for the numerical simulations (Figure 3). As a result, the truncated
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dome was excluded from the simulations because this object proved
to be too complex to be meshed, mainly due to its small dimensions
combined with sharp edges and narrow corners. With our decom-
position strategy, we first obtained a mesh containing approxi-
mately 15.6 million elements, including the water layer above
the PVC. Figure 6 shows a typical distribution of the element size
for the model with the applied decomposition and meshing strategy.
The maximum edge length is about four times bigger than the small-
est one, being approximately 1.6 and 0.4 mm, respectively. It is im-
portant to note that the accuracy of the spectral-element simulations

is not directly constrained by the element size, but rather by the
number of GLL points per wavelength. The initial meshing strategy
was designed for fourth-order polynomial basis functions, requiring
five GLL points per wavelength, which is approximately five
GLL points per element (Mulder, 1999). Considering the minimum
velocity of the model — namely, 1050 m∕s for the S-waves in
PVC — and the maximum target frequency (650 kHz), the goal
was to have all the edge lengths less than 1.6 mm. We present an
optimized meshing strategy in Appendix A, which allowed us to
reduce the number of elements to approximately 1.4 million and
the computational cost by a factor of four to six.

Numerical implementation of the real transducer
characteristics

One of the most important tasks in our work was to accurately
implement the real characteristics of the transducers in the numeri-
cal simulations. Because it is omnidirectional and has a frequency-
independent sensitivity, the Teledyne Reson® hydrophone (used as
the receiver for offset measurements) was implemented as a point
receiver. However, the Imasonic® source transducer has a unique
radiation pattern that cannot be described by the classic analytical
formulation of Zemanek (1971), or by an approximate radiation pat-
tern valid only for the dominant frequency (Tantsereva et al., 2014a).
The latter does not provide a good solution because other frequencies
also contribute to the radiation pattern. Therefore, we propose a new,
two-step approach to implement the real transducer characteristics in
numerical simulations, accounting for all frequencies. The procedure
consists of laboratory characterization of the source followed by an
inversion step to obtain a numerically equivalent source.
The characterization of the radiation pattern of the source trans-

ducer was performed in a water tank. The source transducer was
connected to a pulse generator and kept fixed, whereas the hydro-
phone was moved around the source to record the impulse response
of the source at every 0.2°, covering an angle range of 200° at a
constant distance of 259 mm (Figure 7). The recorded data set was
the input for the subsequent inversion step. Here, we need to dis-
tinguish the procedures to obtain the numerically equivalent source
in zero-offset and offset configurations because they require a
slightly different approach (Figure 8). We first introduce the pro-
cedure for the offset case, and the differences for the zero-offset

case are discussed afterward.
Because most of the numerical tools can use

point sources, we built an equivalent disk source
of several point sources. This approach is based
on the theory of wave superposition (Koopmann
et al., 1989). The disk is described by three
parameters: thickness, radius, and the number of
point sources distributed on the surface. The dif-
ferent point sources are independent; i.e., they
can have any arbitrary (smooth) source signal
and are constrained only by the measured data
set and the inversion process. The goal of the in-
version was to determine the source signal of each
point source, such that the resulting overall source
signal of the whole equivalent source is the same
as the one measured at each angle. The initial
guess for each point source was a constant zero
pressure, and the cost function was computed us-
ing the L2-norm:

Figure 6. Distribution of the element size of the mesh for the part
shown in Figure 3.

Figure 7. Schematic diagrams of laboratory characterization of
(a) the source transducer using the source and receiver transducers
and (b) the source transducer illuminating the air-water interface at
normal incidence.

Figure 8. Workflow of the procedures used to implement the numerical equivalent of
the real source transducer in offset and zero-offset configurations.
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ΦðkÞ ¼ ΣiΣjðmij − cijÞ2; (7)

where ΦðkÞ denotes the cost function after the kth iteration, and mij

and cij are the recorded and the calculated impulse responses at the
ith time sample and jth hydrophone position, respectively. During the
inversion step, some parameters, namely, the radius of the equivalent
disk, the number of point sources distributed on the disk, the number
of layers in the disk, and the number of iterations, were tested to find
the best fit with the measured data. We found that a radius of 3 mm
with 253 point sources distributed on only one disk layer gives the
best fit between the measured and the inverted radiation patterns (Fig-
ure 9). Using more than 10,000 iterations did not result in any sig-
nificant change in the results. The comparison of simulated traces
using the inverted equivalent source with the measured traces shows
an angle dependency in the goodness of fit (Figure 9). Indeed, the
main lobe of the radiation pattern (corresponding to �30° around
the center of the transducer) is accurately recovered. For example,
the correlation coefficients between the measured and simulated
traces at 0° and 20° are 0.99 and 0.98, respectively (Figure 10). How-
ever, outside of the range of �30°, the goodness of fit drastically
decreases with increasing angle from the center of the transducer
(Figure 9). For example, the correlation coefficient between the mea-
sured and simulated traces at 60° is 0.64 (Figure 10). Therefore, the
secondary lobes of the real radiation pattern are less accurately re-
covered. This can be explained by the fact that the recorded signals
corresponding to the secondary lobes have far less energy than those
of the main lobe (less than −20 dB). Hence, they can be overshad-
owed by the noise recorded in the laboratory data.
The procedure to obtain the numerically equivalent source in the

zero-offset configuration is quite similar to the previous one, but it
requires a deconvolution process before the inversion step (Fig-
ure 8). This is due to the fact that for zero-offset measurements
the same source transducer is used twice (first as the source and
then as the receiver). Therefore, an extra measurement is needed,
using only the source transducer to measure the reflected wavefield
from the water-air interface at normal incidence (at a distance of half
of 259 mm). The deconvolution process is done in the frequency
domain after a Fourier transform of all the recorded signals. Let
us denote the laboratory trace recorded by the hydrophone opposite
to the source transducer as trace 1 (Figure 7) and the trace recorded
by the source transducer corresponding to the reflected wavefield
from thewater-air interface at normal incidence as trace 2 (Figure 7).
The process can be summarized as follows:

Step 1) Note that trace 2 is the square of the source transfer func-
tion. Therefore, the square root of trace 2 gives the source
transfer function at 0°, i.e., in the opposite position to the
source.

Step 2) Because the hydrophone is omnidirectional, the receiver
transfer function is the same at each angle α. Therefore,
divide trace 1 by the source transfer function (step 1) to
determine the receiver transfer function (RðωÞ).

Step 3) Divide all the traces recorded by the hydrophone with the
receiver transfer function (step 2) to get SαðωÞ for each
angle α (deconvolution in the time domain).

Step 4) Take the square of SαðωÞ for each α to obtain the zero-
offset transfer function of the source transducer at each
angle.

Step 5) Inverse Fourier transform all the obtained traces to the time
domain.

The data set derived using this deconvolution process is the input
to the inversion process, which is the same as described above for
the general offset case. According to our tests, the best fit between
the measured and the inverted radiation patterns can be obtained
with a disk radius of 6 mm, using 253 point sources and only one
disk layer. Similar to the offset case, using more than 10,000 iter-
ations did not provide better results. The angle dependency in the
goodness of fit is also valid for the zero-offset case. However, the
range of accurate fit is broader (approximately �35° around the
center of the transducer). This is due to the fact that (relatively)
more energy is focused in the central beam in this configuration;
thus, the outer region (with lower signal-to-noise ratio) has less in-
fluence on the inversion of the main lobe.

Figure 9. Comparison of the measured (blue) and inverted (red)
radiation patterns of the transducer in offset configuration. The
amplitude is maximal opposite to the transducer (0°).

Figure 10. Comparison of the measured traces (blue) with the
simulated traces (red), using the inverted equivalent source, at dif-
ferent angles. The correlation coefficients are shown in each panel,
respectively.
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Numerical calibration of material properties

Because the characterization of material samples yields a range of
values for each measured property, an initial calibration was neces-
sary to find the values to be used for the final simulations. To have
the least geometric effect on the calibration, a test point above the
flat part of the model was chosen (the black cross in Figure 11),
far from the sides of the model to avoid edge effects as much as
possible. For this point, the laboratory trace was considered to
be the reference, and the following properties were tested during the
calibration simulations: velocity and Q-factors for P- and S-waves
for the PVC. The densities of PVC and water and the velocity of
P-waves in water were considered to be known.
We note here that the investigated parameters have a combined

effect on the amplitude, phase, and arrival times, so the result of this
calibration provides one possible solution in the parameter space.
First, the velocities of P- and S-waves for the PVC were calibrated,
then all the remaining differences between the reference laboratory
trace and the simulated trace were attributed to QP and QS.

The resulting material parameters from the calibration are as fol-
lows: VP ¼ 2260 m∕s, VS¼1050m∕s, ρ¼1412kg∕m3,QP ¼ 28.7,
and QS ¼ 26.

DATA COMPARISONS

Comparison of zero-offset data

Here, we consider more specifically three traces of the laboratory
zero-offset section, shown in Figure 4 and corresponding to the red
line in Figure 3. These traces (labeled as A, B, and C in Figure 4) are
of particular interest because they contain diffracted waves gener-
ated by the feature edges, as well as reflections from the flat and
curved surfaces of the model.
Trace A is located above the lower edge of the pyramid, in which

its flank meets the flat part (Figure 12). It is composed of several
groups of reflections from the side of the pyramid (denoted as event
A1), from the flat part (A3 and A4), from the bottom of the model
below the flat part (A8 and A9), and below the dome (A10). Several

groups of diffracted waves are also present, cor-
responding to diffractions from the upper edge
(A2) and the lower edge (A7) of the pyramid,
and from the edge of the dome (A6). Event
A5 is related to the truncated dome, which is
not included in the simulations.
Trace B is located half-way between the pyra-

mid and the dome (Figure 13). It is composed of
several groups of events associated with reflec-
tions from the side of the dome (events B1
and B2), from the side of the pyramid (B3), from
the flat part (B4), and from the bottom of the
model below the flat part (B6). Event B5 is
the superposition of diffractions from the upper
edge of the pyramid and from the edge of the
dome. Event B7 corresponds to the superposition
of a reflection from the bottom of the model be-
low the dome and a diffraction from the lower
edge of the pyramid.
Trace C is located on the other side of the

dome, compared with traces A and B (Figure 14).
It is composed of several groups of reflections
from the side of the dome (C1 and C2), from
the flat part (C3 and C4), and from the bottom
of the model below the flat part (C6 and C7).
Event C5 is a multiple of a diffraction from the
lower edge of the dome, whereas event C8 is a
multiple reflection.
It is important to note that the laboratory data

are real data because they contain unknown noise
recorded by the acquisition system. Furthermore,
as shown in Figure 2, the source wavelet is a long
signal, composed of a main event followed by a
few tens of μs long low-energy tail with small
amplitudes (ringing effect). It may explain the
fact that some events are composed of two parts
(e.g., events A8 and A9 in Figure 12; B1 and B2
in Figure 13; C1 and C2, C3 and C4, C6 and C7
in Figure 14).
Qualitative comparisons between laboratory

and synthetic traces show a quite good fit in am-

Figure 11. Comparison of zero-offset laboratory trace with synthetic results for the test
point to calibrate the material properties before the final simulations. The position of the
test point is shown with the black cross.

Figure 12. Comparison of zero-offset laboratory trace Awith synthetic results. Physical
interpretation of the annotated events is provided in the text.

Figure 13. Comparison of zero-offset laboratory trace B with synthetic results. Physical
interpretation of the annotated events is provided in the text.
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plitude, phase, and traveltime. Regardless of the trace location, syn-
thetic traces show an almost perfect fit with the experimental data in
time, phase, and amplitude for the reflected events from the top and
bottom of the flat part of the model. The early and late parts of these
arrivals sometimes reveal minor amplitude misfits, most probably due
to the low-energy second part of the source signal, which may not be
perfectly reconstructed by the source inversion, as well as the uncer-
tainties in the attenuation parameters chosen for the simulations.
Events associated with the side reflections and/or diffractions from
the topographic features are also well restored by the simulations
(see events A1 in Figure 12, B5 and B6 in Figure 13, and C1 and
C8 in Figure 14). The correlation coefficients between the measured
and simulated traces are 0.91, 0.95, and 0.91 for traces A, B, and C,
respectively. These good results are due to the fact that SEM has the
ability to honor the model geometry, even for tilted and curved in-
terfaces by using a nonstructured mesh.

Comparison of offset data

Here, we consider more specifically one trace of the laboratory
offset section, labeled D in Figure 5. The source location (repre-
sented by the asterisk in Figure 15) is above the flank of the dome,
and the receiver (represented by the triangle in Figure 15) is located
close to the ramp. Trace D contains several groups of events, mainly
associated with the direct source-receiver travel path (labeled as D1
in Figure 15), the reflection from the top of the truncated pyramid
(D2), and the reflection from the curved surface of the dome (D3).
A qualitative comparison between the simulated results and lab-

oratory data shows a good fit in arrival time, phase, and amplitude
for all the events pointed out, except for the reflection from the
dome (D3). Some important remarks must be highlighted here.
First, the offset configurations are more sensitive to noise than the
zero-offset ones. Due to a more complex acquis-
ition setup, using more electric devices and trans-
ducers, the signal-to-noise ratio of the laboratory
data in the offset configuration is generally lower
than in the zero-offset case. Furthermore, the off-
set configurations are also more sensitive to uncer-
tainties in the acquisition geometry, especially in
the case of a model with strongly tilted and curved
interfaces. Indeed, it can be analytically shown
that a small uncertainty in the source position
and/or in the incidence angle of the incident wave
may have a significant impact on the illumination
of the curved surface of the dome. As a result, it
can have a huge effect on the reflected and dif-
fracted wavefields (see the “Discussion” section).
It explains the fact that event D3 in Figure 15 is
quite well-modeled by the simulation, but with
significant time and amplitude misfits. The corre-
lation coefficient between the measured and simu-
lated traces is 0.76 for trace D. Finally, as
mentioned above, the implementation of the nu-
merically equivalent source has higher uncertain-
ties for the low-energy later part of the source
wavelet and the secondary lobes (due to the
low signal-to-noise ratio of these events) than
for the main lobe of the directivity pattern. Even
if they carry less energy than the main lobe, the
role of these higher order lobes in the illumination

of the model should not be neglected in the case of offset configu-
rations.

DISCUSSION

As shown above, SEM can reproduce laboratory zero-offset data
in terms of arrival time, phase, and amplitude with excellent accu-
racy. However, the fit between synthetic results and experimental
offset data is significantly less accurate. We discuss here the pos-
sible explanations for this observation, including experimental un-
certainties and numerical implementation of the directivity pattern
of the source transducer, as well as the computational cost.
Laboratory data always contain noise, and offset data sets have a

lower signal-to-noise ratio than zero-offset ones. Moreover, uncer-
tainties in the transducer positions also have an effect on the data. It
is more significant in the offset case because there is a nonlinear
combination of uncertainties in the source location, the source tilt
angle, and the receiver position. This nonlinear combination makes
it difficult to evaluate the role of one effect over the others. This
effect is even more pronounced in the presence of strongly curved
interfaces, causing wave defocusing. Let us analyze here this source
of misfit and quantify the order of magnitude of the possible result-
ing error. Because the problem is the most pronounced in the case of
strongly curved interfaces, we show an example for the Marseille-
Benchie model using the dome.
The geometry of the problem is shown in Figure 16, and for now

we suppose that the source is located exactly above the top of the
dome. We are interested in the change in the offset of the arrival of a
given ray due to an error in the tilt angle of the source (γ). Based on
geometric considerations, we can obtain the following relations:

Figure 14. Comparison of zero-offset laboratory trace C with synthetic results. Physical
interpretation of the annotated events is provided in the text.

Figure 15. Comparison of offset laboratory trace D with synthetic results. Physical in-
terpretation of the annotated events is provided in the text. The red line shows the ac-
quisition line, the yellow asterisk shows the source position, and the yellow triangle
shows the receiver corresponding to trace D.
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δx ¼ RþH
cos2ðΘÞ δΘ (8)

and

δy ¼ δl2
sinðαÞ

cosðΘþ αÞ

þ l2
cosðαÞδα cosðΘþ αÞ þ sinðΘþ αÞðδΘþ δαÞ sinðαÞ

cos2ðΘþ αÞ ;

(9)

where the offset change is the sum of δx and δy, R denotes the ra-
dius of the dome, andH is the distance between the top of the dome
and the source transducer. To quantify the order of magnitude of the
error in the offset, we consider H ¼ 140 mm, R ¼ 51.25 mm, and
γ ¼ 5°. Supposing an error of 0.5° in the source position, the point
of illumination on the surface of the dome has an error of 1.3 mm.
Using equations 8 and 9 above, we get δx ¼ 5.2 mm and
δy ¼ 1.5 mm. This means that an uncertainty of 0.5° in the source
tilt angle leads to a shift of 6.7 mm (134 m at seismic scale) in the
arrival offset of the beam (i.e., in the receiver location), depending
on the point of the illumination of the surface of the dome. This
uncertainty may thus have a significant impact on the arrival time
and the amplitude of the reflected and diffracted events. In ongoing
work, we now focus on the design of an acquisition system provid-
ing much higher accuracy of transducer positions to significantly
decrease these uncertainties in the recorded data.
We have proposed a strategy to numerically implement the direc-

tivity pattern of the real source transducer. This strategy permits to
recover the main lobe of the emitted beam, in which most of the
energy is concentrated. The excellent fit between synthetic results
and laboratory zero-offset data shows that the strategy is efficient in
zero-offset configurations because the main lobe mostly illuminates
the model and contributes to the recorded data. Nevertheless, for
offset data recorded in strong topographic environments, the pro-
posed strategy is less accurate because the low-energy later part
of the source wavelet (see Figure 2) and the secondary lobes play
an important role in the illumination of the model, even if they carry
far less energy than the main event of the source wavelet in the main
lobe. Indeed, in our case, they may interact with the dome and the
pyramid (depending on the source location), influencing the ampli-

tude and phase of the wavefield. Future work will focus on a new
approach to numerically implement real transducer properties,
which can accurately account for the main lobe and the lower en-
ergy parts of the source wavelet.
The computational cost of numerical methods is often an impor-

tant point, particularly in the operational context of seismic explo-
ration. Here, we differentiate between the man-hour cost spent on
the preparation of the simulations and the computational cost (i.e.,
the number of processors used for simulations times the actual run-
ning time of one simulation). In general, SEM has a large man-hour
cost, due to the nonstructured hexahedral meshing. To illustrate this
problem, we note that we spent three weeks to find the optimal mesh-
ing strategy for the Marseille-Benchie model, without finding a sat-
isfying strategy for the truncated dome. Contrary to the common
finite-difference gridding, there is no quick or cheap solution to non-
structured hexahedral meshing in terms of man-hour cost.
Regarding the computational cost of the method, we used 2100

Intel Xeon Sandy Bridge EP (E5-2680) processor cores for the sim-
ulations. The initial meshing strategy resulted in a mesh that needed
10,150 core hours to simulate 350 μs of wave propagation (corre-
sponding to 7 s at seismic scale). Using the optimized meshing strat-
egy of Appendix A, this cost was reduced to 1611 core hours with a
relative element size of 2.5, or to 2538 core hours with a relative
element size of 2.25.

CONCLUSIONS AND FUTURE WORK

The goal of our work is to provide a possible workflow to adapt
the numerical simulations and the small-scale laboratory experi-
ments to each other, such that the two can be easily compared with
high accuracy. We are also interested in the ability of SEM to ac-
curately simulate complex 3D wavefields including (multiple) dif-
fractions at the lowest possible computational and man-hour cost.
We have thus compared 3D SEM simulations with laboratory mea-
surements in 3D zero-offset and 3D offset offshore reflection con-
figurations for a small-scale physical model. The model includes
structures with steep flanks, sharp edges, corners, and curved inter-
faces. This complexity provides a challenge to any numerical method
to reproduce the wavefield.
Prior to the simulations, some works have focused on the input

data/parameters, such as the material properties, the model geom-
etry, and the characteristics of the source and receiver transducers.
The viscoelastic behavior of the material used in the model has

been approximated with a set of Zener standard
linear solids, whereas the other parameters are
known from previous laboratory characterization
of material samples. The real source transducer
characteristics have been implemented based
on a new approach: laboratory characterization
of the impulse response, followed by an inver-
sion step to obtain a numerically equivalent
source for the numerical simulations. The zero-
offset measurement requires an additional decon-
volution step before the inversion because, in that
case, only one transducer is used as the source
and the receiver.
We have suggested an optimization of the

computational cost, by using larger elements in
the nonstructured mesh and higher order polyno-
mial basis functions. This technique helps toFigure 16. The effect of the uncertainties in the source position on the wavefield.
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significantly reduce the computational cost, while obtaining a sim-
ilar level of accuracy.
Comparison of the zero-offset synthetic and laboratory results

has revealed an excellent fit in terms of arrival time, phase, and am-
plitude. Minor amplitude mismatches may be attributed to the noise
recorded in the laboratory data, as well as to the inaccuracy of the
proposed source implementation to restore the low-energy secon-
dary lobes of the source transducer, and the uncertainties in the at-
tenuation parameters chosen for the simulations. Comparison of
simulated and laboratory offset traces has exhibited a good fit in
terms of amplitude, arrival time, and phase, but with significantly
less accuracy for some arrivals than in the zero-offset case. This can
be mainly attributed to the inaccuracies of the transducer positions
during the laboratory measurements combined with the strong
topography of the model, as well as to the smaller signal-to-noise
ratio of the offset configurations.
Future work will focus on the development of a more accurate

acquisition system to reduce inaccuracies in transducer positions
during the laboratory measurements. Furthermore, the noise level
of the new acquisition system will have to be assessed. The pro-
posed numerical implementation of the real transducer should also
be investigated further, to account more for the low-energy secon-
dary lobes, and the low-energy later arrivals of the source signal as
well, because they may also contribute to the wavefield. The reduc-
tion of the man-hour cost of SEM, due to the lengthy meshing step,
will be essential in the future. A more robust and automatic meshing
tool, suitable for nonstructured hexahedral meshing of arbitrary 3D
geometries will be required. The laboratory data sets and the obtained
numerical results should also be compared with other numerical
methods, such as the commonly used finite-difference method.
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APPENDIX A

MESH OPTIMIZATION TO REDUCE THE
COMPUTATIONAL COST

As mentioned in the “Meshing” section, finding the appropriate
meshing strategy for a complex geometry using a nonstructured hexa-
hedral mesh is a time-consuming procedure. Thus, our goal here is to
reduce the computational cost without modifying the meshing strat-
egy. In other words, we use the same subdivision of the whole model

into subdomains and the same meshing order of the different sub-
domains.
Our optimization takes advantage of the fact that the accuracy of

the spectral-element simulations is not directly constrained by the
element size, but rather by the number of GLL points per wave-
length. This means that we can increase the element size and keep
a similar level of accuracy of the simulations by increasing the order
of the polynomial basis functions. This technique is widely dis-
cussed in the literature as h−, p−, or h − p convergence, where
h stands for the element size and p denotes the polynomial order
of the basis functions (e.g., Hughes, 1987; Maday and Rønquist,
1990; Seriani and Priolo, 1994; Vos et al., 2010; Oliveira and Ser-
iani, 2011). For the initial meshing of the model, we used basis
functions of order N ¼ 4, meaning that N þ 1 ¼ 5 GLL points
are used in each element.
We consider the mesh presented in Figure 3 as the reference for

this Appendix. As shown in the “Comparison of zero-offset data”
section, the reference mesh yields accurate synthetic results com-
pared with the zero-offset laboratory data. When creating a non-
structured mesh, the element size has a distribution as shown in
Figure 6. This is due to the geometric constraints on the meshing
algorithm, resulting in various element sizes. Cubit/Trelis uses a tar-
get element size because the meshing algorithm aims to mesh the
model such that the average of the element sizes is close to this
target value. For the reference mesh, a target edge length of 1.1 mm
is necessary to have the largest elements below the required thresh-
old of 1.6 mm. For the sake of brevity, we use relative target element
sizes hereafter, by considering the target element size of the refer-
ence mesh as being equal to one. We note that small changes in the
target element size result in the same distribution of the element
sizes; only the size of each element is multiplied by the factor of
the change. According to our experience, this remains true even for
such a complex geometry as the Marseille-Benchie model if the
change is at most a factor of 0.2–5. Because our meshing strategy
involves the subdivision of the model into several subdomains, there
is an upper limit for increasing the element size. With our decom-
position strategy, using approximately five times larger elements
than the reference value is the upper limit. It comes from the fact
that above this value, the element size becomes too high compared
with the dimensions of some of the subdomains. We emphasize that
using larger elements does not result in a less accurate representa-
tion of even the curved interfaces because curved hexahedral ele-
ments are used. It means that the numerical tool can account for
curved edges and surfaces of each element, instead of only straight
lines and planar surfaces (Komatitsch and Vilotte, 1998; Fichtner,
2010).
We tested two different approaches. The first one consists of fix-

ing the polynomial order of the basis functions and changing the
element size. The second one keeps the element size fixed and
changes the polynomial order. To evaluate the results, we ran the
same zero-offset simulations using the different meshes and com-
pared the resulting synthetic traces with traces obtained with the
reference mesh. To evaluate the tests, we use zero-offset traces B
and C (Figures 13 and 14). To obtain a quantitative comparison, we
computed the root-mean-square (rms) difference between each syn-
thetic trace and the reference trace. Figure A-1 shows the relative
computational cost and the rms misfit for different element sizes,
using the sixth-order polynomial basis functions. The results sug-
gest that the optimum is around relative element sizes of 2.25–2.5.
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Using smaller elements increases the computational cost, whereas
using larger elements increases the rms misfit without any signifi-
cant gain in the relative computational cost.
Considering that the optimal element size is approximately 2.5

(based on Figure A-1), the effect of the polynomial order has to
be examined as well. Figure A-2 shows the relative computational
cost and the rms misfit for different polynomial orders, using a rel-
ative element size of 2.5. The results show that the polynomial order
of eight yields the smallest rms misfit (approximately 0.008). Even

though the rms misfit is somewhat higher for order six (approxi-
mately 0.05), its computational cost is more than three times lower
than that of order eight. We note that the rms misfit does not show a
monotonous trend for any of the traces, neither in Figure A-1 nor in
Figure A-2. This is probably due to the nonstructured mesh. Maday
and Rønquist (1990) mathematically prove that a monotonous trend
in the misfit curves can be expected only for a structured mesh, but
not necessarily for a nonstructured mesh.
Figure A-3 shows the comparison of the traces using the opti-

mized mesh (relative element size of 2.5) and sixth-order basis func-
tions with the reference traces. The optimized mesh provides an
excellent fit with the reference solutions in general. Due to the larger
elements, some minor oscillations can be seen, probably due to
mesh dispersion. However, their amplitude and difference from the
reference solutions are negligible. Considering that the relative
computational cost is only 15.7% of the reference simulation, we
suggest to use the optimized meshing strategy. Moreover, the effect
of mesh dispersion can be reduced by using a relative element size
of 2.25 instead of 2.5. In that case, the relative computational cost is
still 25% of the reference, in return for a bit higher accuracy than
with a relative element size of 2.5.
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